ITO靶材的核心用途是在磁控溅射工艺中作为“溅射源”。磁控溅射是一种常见的薄膜沉积技术,通过高能离子轰击靶材表面,使靶材原子被“敲击”出来,终沉积在基板上,形成一层均匀的ITO薄膜。这层薄膜厚度通常在几十到几百纳米之间,却能同时实现导电和透光的功能。
尽管制备方法看似成熟,但实际操作中仍有不少难题需要攻克:
成分配比的性:氧化锡的掺杂量通常控制在5-10%之间,过高会导致透明度下降,过低则影响导电性。如何在微观尺度上实现均匀混合,是一个技术挑战。
靶材密度:低密度靶材在溅射时容易产生颗粒飞溅,导致薄膜出现缺陷。提高密度需要优化压制和烧结条件,但这往往伴随着成本的上升。
微观结构的控制:靶材内部的晶粒大小和分布会影响溅射的稳定性。晶粒过大可能导致溅射不均,而过小则可能降低靶材的机械强度。
热应力管理:在高温烧结过程中,靶材可能因热膨胀不均而产生裂纹,影响成品率。
这些难点要求制造商在设备、工艺和质量控制上投入大量精力。
铟靶材主要由金属铟制成,具有质软、延展性好和导电性强的特点。作为稀有金属,铟在自然界的含量稀少,但其独特的物理和化学性质使其成为众多高科技产品的核心组件。铟靶材广泛应用于航空航天、电子工业等领域,是制造高性能电子元器件的关键材料。
透明导电薄膜在现代光电行业中具有至关重要的地位,是触摸屏、显示器和太阳能电池等设备中的核心组件。ITO靶材凭借其出色的透明导电特性成为制备透明导电薄膜的材料。