铟回收面临的主要挑战包括铟在电子设备中的低浓度和与其他金属的合金化。传统的回收方法难以有效提取,需要采用湿法冶金或火法冶金等先进技术。同时,回收过程中需确保电子废物流的分类和处理,以减少污染物对回收过程的影响。 铟回收具有重要的环保和经济效益。通过回收废旧靶材中的铟,可以减少对新资源的开采,降低环境污染,实现资源的可持续利用。此外,回收铟还能稳定市场供应,降低生产成本,促进相关产业的可持续发展。
当前,铟的主要消费领域集中在ITO靶材上,其占比高达约70%。此外,半导体制造和合金领域的需求也不容忽视,两者合计占总消费量的24%,而其他研究领域则占据了6%。然而,由于ITO制造过程中靶材利用率仅达30%左右,导致大量剩余材料成为废料。加之电子废弃物的激增,铟回收已成为资源可持续利用不可或缺的一环。随着技术进步和应用需求的增长,ITO废料回收能有效减少原矿资源消耗,实现资源的可持续性发展。
物理分离法中的机械剥离技术,是通过破碎、筛分和浮选等方法,将ITO涂层与玻璃基板进行分离。随后,再结合化学处理对分离出的ITO涂层进行铟的提取。这种方法主要适用于LCD面板的回收,但需注意,其纯度可能相对较低。再生铟的应用广泛,包括重新制备ITO靶材,以及在半导体、合金等领域的使用。从经济角度看,回收1吨铟可以减少大约50吨原矿的开采,同时,回收铟的成本相比原生铟要低30%~50%。综上所述,ITO铟的回收不仅对环境友好,还能带来显著的经济效益。随着科技的不断进步和电子废弃物数量的不断增加,且环保的回收方案将成为稀散金属可持续利用的关键所在。
主流回收工艺分类 当前ITO靶材回收主要围绕铟元素提取展开,主要分为物理法、化学法和联合工艺三类: 熔炼过滤法(物理法) 通过高温熔炼结合筛网过滤实现铟与其他金属的分离。具体流程包括: 废铟块在625℃熔炼炉中熔化,利用铁/不锈钢筛网(30-40目)截留固态杂质铁、铝。 熔融铟通过重力滴落收集,残留物可二次熔炼提升回收率至72%。 该方法具有设备简单(图1)、周期短(单次处理≤60分钟)的优势,适用于含铟量70%-90%的废靶材。但需控温(±5℃),否则杂质金属可能熔化导致纯度下降至95%以下。